p21CIP1 and p57KIP2 control muscle differentiation at the myogenin step
نویسندگان
چکیده
منابع مشابه
miR-186 inhibits muscle cell differentiation through myogenin regulation.
The complex process of skeletal muscle differentiation is organized by the myogenic regulatory factors (MRFs), Myf5, MyoD, Myf6, and myogenin, where myogenin plays a critical role in the regulation of the final stage of muscle differentiation. In an effort to investigate the role microRNAs (miRNAs) play in regulating myogenin, a bioinformatics approach was used and six miRNAs (miR-182, miR-186,...
متن کاملDown-Regulation of Myogenin Can Reverse Terminal Muscle Cell Differentiation
Certain higher vertebrates developed the ability to reverse muscle cell differentiation (dedifferentiation) as an additional mechanism to regenerate muscle. Mammals, on the other hand, show limited ability to reverse muscle cell differentiation. Myogenic Regulatory Factors (MRFs), MyoD, myogenin, Myf5 and Myf6 are basic-helix-loop-helix (bHLH) transcription factors essential towards the regulat...
متن کاملMyogenin Controls Muscle Metabolism
Streptomyces cell death, which occurs as the bacteria develop fruiting bodies and form spores, has been dismissed as nonspecific autolysis caused by cell wall degradation. Now Miguélez et al. (page 515) show that the cell death is complex: it occurs at two different times in two different locations and as a series of defined steps that leave the cell wall intact. Streptomyces grow first along a...
متن کاملp57KIP2: "Kip"ing the cell under control.
p57(KIP2) is an imprinted gene located at the chromosomal locus 11p15.5. It is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family, which includes additionally p21(CIP1/WAF1) and p27(KIP1). It is the least studied CIP/KIP member and has a unique role in embryogenesis. p57(KIP2) regulates the cell cycle, although novel functions have been attributed to this protein including cyto...
متن کاملRegulation of heterochromatin remodelling and myogenin expression during muscle differentiation by FAK interaction with MBD2.
Focal adhesion kinase (FAK), a major cell adhesion-activated tyrosine kinase, has an important function in cell adhesion and migration. Here, we report a new signalling of FAK in regulating chromatin remodelling by its interaction with MBD2 (methyl CpG-binding protein 2), underlying FAK regulation of myogenin expression and muscle differentiation. FAK interacts with MBD2 in vitro, in myotubes, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genes & Development
سال: 1999
ISSN: 0890-9369
DOI: 10.1101/gad.13.2.213